Blender Class Index

[Index] [Hierarchy]

Object Blender objects can be seen in the OOPS window as gray rectangles
Mesh Blender meshes can be seen in the OOPS window as brown rectangles
Materia Blender materials can be seen in the OOPS window as cyan rectangles

Camera Blender cameras can not be seen in the OOPS window at the moment
DisplaySettings The display settings are reflected in Blender's display buttons (F10)

Lamp Blender lamps can be seen in the OOPS window as yellow rectangles
Scene Blender scenes can be seen in the OOPS window as green rectangles
Blender Thisisin fact no classit isamodule in Python

GUI Thisisinfact no classit isamodule in Python

FileSelector A file selector can be seen in Blender when you load (F1) or save (F2) afile

Documentation generated by jan@nvidea on Tue Feb 6 14:36:56 CET 2001 Kdoc

Blender Class

[Index] [Hierarchy]

Hierarchy

FileSel ector

Documentation generated by jan@nvidea on Tue Feb 6 14:36:56 CET 2001

K doc

Blender Class Reference

[Blender Index] [Blender Hierarchy]

Thisisin fact no classit isamodule in Python More...

#i ncl ude <bl ender. h>

Public Members

« Blender ()

« ~Blender ()

o PyObject* addM esh (const char* type)

« PyObject* connect (PyObject* obj1, PyObject* obj2)
» PyObject* getCamera (const char* name)

o PyODbject* getCurrentScene ()

« PyObject* getDisplaySettings ()

« PyObject* getl amp (const char* name)

« PyObject* getMaterial (const char* name)
« PyObject* getMesh (const char* name)

» PyObject* getObject (const char* name)

o PyODbject* isCamera (const char* name)

« PyObject* isLamp (const char* name)

» PyObject* isMesh (const char* name)

o PyODbject* setCurrentFrame (int frame)

Detailed Description

Thisisinfact no classit isamodulein Python. But | use it here as a class to document the global
functions availabe in the Blender module.

PyObject* addMesh(const char* type)

This reflects what happens if you press SPACE in Blender and select ADD->Mesh. The type string is
one of the strings shown in Blender's submenu ("Plane", "Cube", etc.).

PyObject* connect(PyObject* obj1, PyObject* obj2)

This should connect things like it is shown in the OOPS window. At the moment you can only connect
objects with meshes and scenes with objects. Thisislikely to change in the future.

PyObject* getCamera(const char* name)

Even if you can't see the connected data to an camera object in the OOPS window yet you can get access
to the camera settings by calling this function with the name of the camera data.

PyObject* getCurrentScene()

Gives access to the current scene. For export scripts this should be one of the first things you should do.
The names of the objects in the scene are stored and you can step through this names and get access to
the associated data by calling getObject(name).

PyObject* getDisplaySettings()

Because you can't create instances of the class DisplaySettings you have to call this function to create
one for you. Then you can retrieve the data from the returned instance.

PyObject* getLamp(const char* name)

Gives access to the lamp data by using the unique name.

PyObject* getMaterial(const char* name)

Gives access to the material data by using the unique name.

PyObject* getMesh(const char* name)

Gives access to the mesh data by using the unique name.

PyObject* getObject(const char* name)

Gives access to the object data by using the unique name.

PyObject* isCamera(const char* name)

If you want to check if the connected data to this object (with this name) isreally a camera use this
function.

PyObject* isLamp(const char* name)

If you want to check if the connected data to this object (with this name) isreally alamp use this
function.

PyObject* isMesh(const char* name)

If you want to check if the connected data to this object (with this name) isreally a mesh use this
function.

PyObject* setCurrentFrame(int frame)

If you want to export an animation you have to step through all the frames. This function allows you to
do so and updates all objects which have some IPOs (InterPOlation curves) connected.

o Author: Jan Walter Kdoc
« Documentation generated by jan@nvidea on Tue Feb 6 14:36:56 CET 2001

/***

bl ender.h - description
begi n : Thu Dec 7 2000
copyri ght : (© 2000 by Jan Walter
emai | . jan@l ender . nl

***/

/***
*

*
* This programis free software; you can redistribute it and/or nodify *
* it under the terns of the GNU General Public License as published by *
* the Free Software Foundation; either version 2 of the License, or *
* (at your option) any |ater version. *
* *
* *

ER R I b b S b S b S b b S R S S S b Rk S b S S b S b S RN S b S b S b b b b b S b S b SRR

/

#i f ndef BLENDER_H
#defi ne BLENDER_H

struct PyQbject;

/**This is in fact no class it is a nodule in Python. But | use it here as a class to
docunent the global functions availabe in the Bl ender nodul e.

*@ut hor Jan Wl ter

*/

cl ass Bl ender {
publ i c:
Bl ender () ;
~Bl ender () ;

/** This reflects what happens if you press SPACE in Bl ender and sel ect ADD- >Mesh.
The type string is one of the strings shown in Bl ender's subnenu ("Plane", "Cube",
etc.). */

PyQbj ect * addMesh(const char* type);

/[** This should connect things like it is shown in the OOPS wi ndow. At the nonent
you can only connect objects with neshes and scenes with objects. This is likely to
change in the future. */

PyQbj ect* connect (PyCbj ect* obj1l, PyQoject* obj2);

/** Even if you can't see the connected data to an canera object in the OOPS w ndow
yet you can get access to the canmera settings by calling this function with the nane
of the canera data. */

Pyoj ect * get Canera(const char* nane);

/** G ves access to the current scene. For export scripts this should be one of the
first things you should do. The names of the objects in the scene are stored and you
can step through this nanes and get access to the associated data by calling
get Obj ect (nane). */

Pyhj ect * get Current Scene();

/** Because you can't create instances of the class DisplaySettings you have to
call this function to create one for you. Then you can retrieve the data fromthe
returned instance. */

PyQbj ect* get Di spl aySettings();

[** G ves access to the |anp data by using the uni que nane. */

PyQbj ect* get Lanp(const char* nane);

/** G ves access to the material data by using the unique nanme. */

PyQbj ect* get Material (const char* nane);

/** G ves access to the nmesh data by using the uni que nane. */

PyQbj ect* get Mesh(const char* nane);

/** G ves access to the object data by using the uni qgue nane. */

PyQoj ect * get Obj ect (const char* nane);

[** I f you want to check if the connected data to this object (with this name) is
really a canera use this function. */

PyQbj ect* isCanera(const char* nane);

[** If you want to check if the connected data to this object (with this name) is
really a lanp use this function. */

PyQbj ect* isLanp(const char* nane);

[** If you want to check if the connected data to this object (wth this name) is
really a mesh use this function. */

Pybj ect* i sMesh(const char* nane);

/[** | f you want to export an animation you have to step through all the frames.
This function allows you to do so and updates all objects which have sone | PGCs
(I'nterPd ati on curves) connected. */

PyQbj ect* setCurrent Frane(int frane);

b

#endi f

Documentation generated by jan@nvidea on Tue Feb 6 14:36:56 CET 2001

Camera Class Reference

[Blender Index] [Blender Hierarchy]

Blender cameras can not be seen in the OOPS window at the moment More...
#i ncl ude <canera. h>

Inherits: Blender

Public Members

o Cameral)
o ~Camera()
e char* name

« PyObject* Lens
o PyObject* ClSta
« PyObject* CIEnd

Detailed Description

Blender cameras can not be seen in the OOPS window at the moment. Only the corresponding object is
visiblein gray.

char* name

All rectangles you can see in the OOPS window are instances of classes with an unique name for all
instances of this class. Nevertheless the name of two instances of different classes can be the same.

PyObject* Lens

Thelens value of Blender isabit odd. If you want to calculate the FOV (field of view angle) you should
know that fov = 360.0 * math.atan(factor * 16.0 / camera.Lens) / math.pi) where factor is dependend on
the x- and y-resolution of your picture.

PyObject* ClSta

Clipping start value

PyObject* CIEnd

Clipping end value

« Author: Jan Walter Kdoc
« Documentation generated by jan@nvidea on Tue Feb 6 14:36:56 CET 2001

/***

camera.h - description
begi n : Thu Dec 7 2000
copyri ght : (© 2000 by Jan Walter
emai | . jan@l ender . nl

***/

/***

*

*
* This programis free software; you can redistribute it and/or nodify *
* it under the terns of the GNU General Public License as published by *
* the Free Software Foundation; either version 2 of the License, or *
* (at your option) any |ater version. *
* *
* *

ER R I b b S b S b S b b S R S S S b Rk S b S S b S b S RN S b S b S b b b b b S b S b SRR

/

#i f ndef CAMERA H
#defi ne CAMERA H

#i ncl ude <bl ender. h>
struct PyQbject;
/ **Bl ender caneras can not be seen in the OOPS wi ndow at the nmonment. Only the

correspondi ng object is visible in gray.
*@ut hor Jan Walter

*/
class Canera : public Blender ({
publ i c:
Canera();
~Canera();

private: // Private attributes

[** Al rectangles you can see in the OOPS wi ndow are instances of classes with an
uni que nanme for all instances of this class. Nevertheless the nane of two instances
of different classes can be the sane. */

char* name;

/** The lens value of Blender is a bit odd. If you want to calculate the FOV (field
of view angle) you should know that fov = 360.0 * nmath. atan(factor * 16.0 /
canmera. Lens) / math.pi) where factor is dependend on the x- and y-resolution of your
picture. */

Pyhj ect * Lens;

[** Cipping start value */

PyQoject* C Sta;

[** dipping end val ue */

PyQbj ect* C End,
b

#endi f

Documentation generated by jan@nvidea on Tue Feb 6 14:36:56 CET 2001

DisplaySettings Class Reference

[Blender Index] [Blender Hierarchy]

The display settings are reflected in Blender's display buttons (F10) More...

#i ncl ude <di spl aysettings. h>

Inherits: Blender

Public Members

« DisplaySettings()

« ~DisplaySettings|()

o PyObject* startFrame

« PyObject* endFrame

o PyObject* currentFrame

« PyODbject* xResolution

« PyObject* yResolution

o PyODbject* pixel AspectRatio

Detailed Description

The display settings are reflected in Blender's display buttons (F10).

PyObject* startFrame

Start frame for animations

PyObject* endFrame

End frame for animations

PyObject* currentFrame

Current frame for animations

PyObject* xResolution

The image width in pixels

PyObject* yResolution

The image height in scanlines
PyObject* pixelAspectRatio

|s the same as Blender's AspY / AspX (see display buttons [F10])

o Author: Jan Walter Kdoc
« Documentation generated by jan@nvidea on Tue Feb 6 14:36:56 CET 2001

/***

di spl aysettings.h - description
begi n . Thu Dec 7 2000
copyri ght : (C 2000 by Jan Walter
emai | : j an@l ender. nl

***/

/***

*

*
* This programis free software; you can redistribute it and/or nodify *
* it under the ternms of the GNU General Public License as published by *
* the Free Software Foundation; either version 2 of the License, or *
* (at your option) any |ater version. *
* *
* *

EZR R Ik b b b b b I b b S kR I kS b i b R R Sk i Sk b e b b b b e ik b

/

#i f ndef DI SPLAYSETTI NGS_H
#define DI SPLAYSETTI NGS_H

#i ncl ude <bl ender. h>

struct Pybject;

[**The display settings are reflected in Blender's display buttons (F10).
*@ut hor Jan Wal ter
*/

class DisplaySettings : public Blender {
publ i c:

Di spl aySettings();
~Di spl aySettings();
private: // Private attributes
[** Start frame for ani mati ons */
PyQbj ect* start Frane;
/** End franme for animations */
PyQoj ect * endFr ane;
/** Current frame for animtions */
PyQbj ect * current Frane;
/** The image width in pixels */
PyQbj ect * xResol uti on;
/** The image height in scanlines */
PyQbj ect* yResol uti on;
/** |Is the sane as Blender's AspY / AspX (see display buttons [F10]) */
PyQbj ect * pi xel Aspect Rat i o;
3

#endi f

Documentation generated by jan@nvidea on Tue Feb 6 14:36:56 CET 2001

Lamp Class Reference

[Blender Index] [Blender Hierarchy]

Blender lamps can be seen in the OOPS window as yellow rectangles More...
#i ncl ude <l anp. h>

Inherits: Blender

Public Members

e Lamp ()

e ~Lamp ()

o char* name

o PyObject* type

« PyObject* mode
- PyObject* Energ
« PyObject* R

o PyObject* G

o PyObject* B

« PyObject* Dist

« PyObject* SpoS
- PyObject* SpoBl
o PyObject* Quadl
« PyObject* Quad2
- PyObject* Halnt
« PyObject* ClipSta
« PyObject* ClipEnd

Detailed Description

Blender lamps can be seen in the OOPS window as yellow rectangles. They are connected to an object.
Compare the attributes of alamp to the settings of the lamp buttons (F4).

char* name

All rectangles you can see in the OOPS window are instances of classes with an unique name for all
instances of this class. Neverthel ess the name of two instances of different classes can be the same.

PyObject* type
The type of alamp can be: "Lamp", "Spot", "Sun", or "Hemi"
PyObject* mode

The mode indicates with a string of length 8 if a setting in the lamp buttons (F4) ison (*1") or off ("0").
The order is exactly the same as in the lamp buttons (from top downwards): "Quad", " Sphere”,
"Shadows", "Halo", "Layer", "Negative', "OnlyShadow", and " Square".

PyObject* Energ
Light energy

PyObject* R

Red part of the lamp color

PyObject* G
Green part of the lamp color
PyObject* B
Blue part of the lamp color

PyObject* Dist

Influences the light attenuation

PyObject* SpoSi

Spotlight setting: Spot size (angle)

PyObject* SpoBl

Spotlight setting: Spot blend (falloff from full light intensity to darkness)

PyObject* Quadl

Influences the light attenuation

PyObject* Quad?2

Influences the light attenuation

PyObject* Haint

The intensity of the spot halo
PyObject* ClipSta
Clipping start value

PyObject* ClipEnd

Clipping end value

« Author: Jan Walter Kdoc
« Documentation generated by jan@nvidea on Tue Feb 6 14:36:56 CET 2001

/***

lanp.h - description
begi n : Thu Dec 7 2000
copyri ght : (C) 2000 by Jan Walter
emai | . jan@l ender. nl

***/

/***

*

*
* This programis free software; you can redistribute it and/or nodify *
* it under the terns of the GNU General Public License as published by *
* the Free Software Foundation; either version 2 of the License, or *
* (at your option) any |ater version. *
* *
* *

khkkkkhkhkhhkhkhkhkhkhkhkhkhhkhhkhhhhkhhkhkhkhkhkhkhkhhhhhdhkhk k ki khkhkdkhkhhhhkhk k k k,k,khidkkkkkk k k,*,*,***x*%x

/

#i f ndef LAMP_H
#define LAMP_H

#i ncl ude <bl ender. h>

struct Pybject;

/**Bl ender | anps can be seen in the OOPS wi ndow as yel |l ow rectangl es. They are
connected to an object. Conpare the attributes of a lanp to the settings of the |anp

buttons (F4).
*@wut hor Jan \Wal ter

*/
class Lanp : public Blender {
publi c:
Lanp() ;
~Lanp() ;

private: // Private attributes

/** Al rectangles you can see in the OOPS wi ndow are instances of classes with an
uni que nane for all instances of this class. Nevertheless the name of two instances
of different classes can be the sane. */

char* nane;

[** The type of a |anp can be: "Lanp", "Spot", "Sun", or "Hem" */

PyQbj ect* type;

/[** The node indicates with a string of length 8 if a setting in the | anp buttons
(F4) is on ("1") or off ("0"). The order is exactly the sane as in the |anp buttons
(fromtop downwards): "Quad", "Sphere", "Shadows", "Halo", "Layer", "Negative",

"Onl yShadow', and "Square". */

PyQbj ect * node;

[** Light energy */

PyQbj ect * Energ;

/** Red part of the lanmp color */

PyQbj ect* R;
[** Green part of the lanmp color */
PyQbj ect* G
[** Blue part of the lanp color */
PyQbj ect* B;

[** Influences the |light attenuation */

PyQoj ect* Dist;
[** Spotlight setting: Spot size (angle) */
PyQbj ect * SpoSi;

[** Spotlight setting: Spot blend (falloff fromfull Iight intensity to darkness)
*/
PyQbj ect* SpoBl ;
[** Influences the light attenuation */
PyQbj ect * Quadil;
[** Influences the |light attenuation */
PyQbj ect* Quad?;
[** The intensity of the spot halo */
PyQbj ect * Hal nt;
[** Clipping start val ue */
PyQbject* dipSta,;
[** Cipping end val ue */
PyQbj ect* d i pEnd;
b
#endi f

Documentation generated by jan@nvidea on Tue Feb 6 14:36:56 CET 2001

Material Class Reference

[Blender Index] [Blender Hierarchy]

Blender materials can be seen in the OOPS window as cyan rectangles More...

#i ncl ude <material . h>

Inherits: Blender

Public Members

o Material ()
« ~Material ()
e Char* name

. PyObject* R
. PyObject* G
. PyObject* B

Detailed Description

Blender materials can be seen in the OOPS window as cyan rectangles. | decided that alist of materials
(only their names) are hold by the objects. Thisis abit inconsistent with the OOPS window where
materials can be connected with objects or meshes for example.

char* name

All rectangles you can see in the OOPS window are instances of classes with an unique name for all
instances of this class. Neverthel ess the name of two instances of different classes can be the same.

PyObject* R

Red part of color

PyObject* G

Green part of color

PyObject* B

Blue part of color

« Author: Jan Walter Kdoc
« Documentation generated by jan@nvidea on Tue Feb 6 14:36:56 CET 2001

/***

material.h - description
begi n : Thu Dec 7 2000
copyri ght : (C) 2000 by Jan Walter
emai | . jan@l ender. nl

***/

/***

*

*
* This programis free software; you can redistribute it and/or nodify *
* it under the terns of the GNU General Public License as published by *
* the Free Software Foundation; either version 2 of the License, or *
* (at your option) any |ater version. *
* *
* *

khkkkkhkhkhhkhkhkhkhkhkhkhkhhkhhkhhhhkhhkhkhkhkhkhkhkhhhhhdhkhk k ki khkhkdkhkhhhhkhk k k k,k,khidkkkkkk k k,*,*,***x*%x

/

#i f ndef MATERI AL_H
#defi ne MATERI AL_H

#i ncl ude <bl ender. h>
struct Pybject;

/**Bl ender materials can be seen in the OOPS wi ndow as cyan rectangles. | decided
that a list of materials (only their nanes) are hold by the objects. This is a bit
i nconsistent with the OOPS wi ndow where materials can be connected with objects or
meshes for exanple.

*@ut hor Jan Wl ter

*/
class Material : public Blender {
publi c:
Mat eri al ();
~Mat eri al ();

private: // Private attributes

[** Al rectangles you can see in the OOPS wi ndow are instances of classes with an
uni que nane for all instances of this class. Nevertheless the nanme of two instances
of different classes can be the sane. */

char* nane;

/** Red part of color */

PyQbj ect* R;

[** Green part of color */

PyQbj ect* G

/** Blue part of color */

PyQbj ect* B;
3

#endi f

Documentation generated by jan@nvidea on Tue Feb 6 14:36:56 CET 2001

Mesh Class Reference

[Blender Index] [Blender Hierarchy]

Blender meshes can be seen in the OOPS window as brown rectangles More...
#i ncl ude <nesh. h>

Inherits: Blender

Public Members

e Mesh ()

e« ~Mesh ()

« Mesh (const char* name)

o PyObject* addFace (intil, inti2,inti3, inti4, int isSmooth, int matlndex)

o PyODbject* addTexCoords (float ul, float v1, float u2, float v2, float u3, float v3, float u4, float
v4)

« PyObject* addTexture (char* filename)

o PyObject* addVertex (float vx, float vy, float vz, float nx, float ny, float nz, float r = -1.0, float g
=0.0, float b =0.0)

« PyObject* createTrianglesFromEdges ()
o PyObject* enter EditMode ()
« PyObject* leaveEditM ode ()
« PyObject* removeDoubles ()
o char* name

« PyObject* vertices

« PyObject* normals

« PyObject* colors

« PyObject* faces

« PyObject* texcoords

o PyObject* texture

Detailed Description

Blender meshes can be seen in the OOPS window as brown rectangles. They are constructed without a
connection to an object but should be connected to one. This gives users the chance to "share" a mesh by
connecting one mesh to different objects.

Mesh(const char* name)

A Blender mesh has allways a uniqgue name. The name you give as an argument is only a proposal for the
real name. Blender will check if this nameis already used and rename the mesh if necessary.

PyObject* addFace(int i1, int i2, int i3, int i4, Iint
IsSmooth, int matindex)

Adds alist with 6 entriesto the faces list. This might change in the future. The first 4 entries are indices
to describe the vertices for atriangle or aquad. The decision if aquad is used or not is made by the 4th
entry. If thisis O then only the first 3 entries are used for an triangle. The 5th entry tellsif the triangle (or
guad) should be rendered as "smooth" (using vertex normals) or not. The last entry is the index of the
material used for thisface.

PyObject* addTexCoords(float ul, float v1, float uz2,
float v2, float u3, float v3, float u4, float v4)

Adds the texture coordinates for one face to texcoords. The texture coordinates are stored for each face as
alist of 4 sublists (for triangles just ignore the 4th sublist). Each of this sublists has 2 entries (u- and v-
direction).

PyObject* addTexture(char* filename)

Replaces the filename (including path) for the texture. In the future more than only one texture might be
used.

PyObject* addVertex(float vx, float vy, float vz, float
nx, float ny, float nz, float r = -1.0, float g = 0.0, float
b =0.0)

Adds valuesfor thelist vertices, normals, and colors. Thefirst 3 values are used for the vertex
coordinates, the next 3 values for the vertex normal, and the last 3 (if used) for the vertex color. The

color information has not to be specified. The default value for r (-1.0) means. Don't store any color
information.

PyObject* createTrianglesFromEdges()

Instead of creating triangles and quads you can also create edges with addFace(...) now. This edges can
be used by calling createTrianglesFromEdges() to triangulate a general polygon (even with holes).

PyObject* enterEditMode()

Thisislike pressing the TAB key in Blender. Y ou enter edit mode and you can add vertices and faces
within Python. Then you leave edit mode again and the data is transfered from Python to Blender.

PyObject* leaveEditMode()

When you leave edit mode all collected data (vertices, faces) are transfered from Python to Blender.

PyObject* removeDoubles()

After importing data (e.g. a DXF file) you might have doubled vertices because the file format does not
allow to reuse the same vertices by using indices. This function removes doubled vertices within a
precision value (at the moment you can't use the precision value from the interface; avalue of 0.0003 is
used) and is aso called internally by createTrianglesFromEdges().

char* name

All rectangles you can see in the OOPS window are instances of classes with an unique name for all
instances of this class. Neverthel ess the name of two instances of different classes can be the same.

PyObject* vertices

Thisholds alist of vertices for usage within Python. A face uses the indices of thisvertices. Thisallows
to store the vertices efficient and to share the same vertex between different triangles or quads.

PyObject* normals

Thisholds alist of vertex normals which can be used for "smooth" rendering. The number of elementsin
this list should be exactly the same asin thelist for the vertices.

PyObject* colors

Thisholds alist of vertex colors. The list might be empty if no colors are used. But if they are used the
list should be exactly of the same size asthe list of vertices.

PyObject* faces

Thisholds alist of faces. At the moment afaceisalist with 6 entries (integers). This might change in the
future. Thefirst 4 entries are indices to describe the vertices for atriangle or aquad. The decision if a
guad is used or not is made by the 4th entry. If thisis O then only the first 3 entries are used for an
triangle. The 5th entry tellsif the triangle (or quad) should be rendered as "smooth" (using vertex
normals) or not. The last entry is the index of the material used for this face.

PyObject* texcoords

Thisholds alist of texture coordinates. The list might be empty but if used the list should have exactly
the same size asthe list of faces. The texture coordinates are stored for each face as alist of 4 sublists
(for triangles just ignore the 4th sublist). Each of this sublists has 2 entries (u- and v- direction).

PyObject* texture

This holds the name (with path) of the used texture (if any).

« Author: Jan Walter Kdoc
« Documentation generated by jan@nvidea on Tue Feb 6 14:36:56 CET 2001

/***

mesh.h - description
begi n : Wed Dec 6 2000
copyri ght : (© 2000 by Jan Walter
emai | . jan@l ender . nl

***/

/***
*

*
* This programis free software; you can redistribute it and/or nodify *
* it under the terns of the GNU General Public License as published by *
* the Free Software Foundation; either version 2 of the License, or *
* (at your option) any |ater version. *
* *
* *

ER R I b b S b S b S b b S R S S S b Rk S b S S b S b S RN S b S b S b b b b b S b S b SRR

/

#i f ndef MESH H
#defi ne MESH H

#i ncl ude <bl ender. h>

struct PyQbject;

/ **Bl ender neshes can be seen in the OOPS wi ndow as brown rectangles. They are
constructed wi thout a connection to an object but should be connected to one. This

gi ves users the chance to "share" a nmesh by connecting one nesh to different objects.
*@ut hor Jan Wl ter

*/
cl ass Mesh: public Bl ender {
public:
Mesh() ;

~Mesh() ;

/** A Bl ender nmesh has allways a uni que nanme. The nane you give as an argunent is
only a proposal for the real name. Blender will check if this name is already used
and renane the nmesh if necessary. */

Mesh(const char* nane);

/[** Adds a list with 6 entries to the faces list. This m ght change in the future.
The first 4 entries are indices to describe the vertices for a triangle or a quad.
The decision if a quad is used or not is made by the 4th entry. If this is 0 then
only the first 3 entries are used for an triangle. The 5th entry tells if the
triangle (or quad) should be rendered as "snooth" (using vertex normals) or not. The
| ast entry is the index of the material used for this face. */

PyQoj ect* addFace(int i1, int i2, int i3, int i4, int isSmooth, int matlndex);

/** Adds the texture coordinates for one face to texcoords. The texture coordi nates
are stored for each face as a list of 4 sublists (for triangles just ignore the 4th
sublist). Each of this sublists has 2 entries (u- and v- direction). */

PyQbj ect* addTexCoords(float ul, float v1, float u2, float v2, float u3, float v3,
float u4, float v4);

/** Replaces the filenane (including path) for the texture. In the future nore than
only one texture m ght be used. */

PyQhj ect* addTexture(char* fil enane);

/** Adds values for the list vertices, normals, and colors. The first 3 values are
used for the vertex coordinates, the next 3 values for the vertex normal, and the

last 3 (if used) for the vertex color. The color information has not to be specifi ed.
The default value for r (-1.0) nmeans: Don't store any color information. */

PyQbj ect* addVertex(float vx, float vy, float vz, float nx, float ny, float nz,
float r = -1.0, float g = 0.0, float b = 0.0);

/** Instead of creating triangles and quads you can al so create edges with
addFace(...) now. This edges can be used by calling createTriangl esFronEdges() to
triangul ate a general polygon (even with holes). */

PyQbj ect* createTriangl esFronkdges();

/** This is like pressing the TAB key in Blender. You enter edit node and you can
add vertices and faces within Python. Then you | eave edit npde again and the data is
transfered from Python to Bl ender. */

Pyhj ect* enter Edi t Mode() ;

/** \When you | eave edit node all collected data (vertices, faces) are transfered
from Python to Bl ender. */

PyQbj ect* | eaveEdi t Mode();

[** After inporting data (e.g. a DXF file) you m ght have doubl ed vertices because
the file format does not allow to reuse the sane vertices by using indices. This
function renoves doubled vertices within a precision value (at the nonent you can't
use the precision value fromthe interface; a value of 0.0003 is used) and is al so
called internally by createTriangl esFronEdges(). */

Pyoj ect * renoveDoubl es();
private: // Private attributes

[** Al rectangles you can see in the OOPS wi ndow are instances of classes with an
uni que nanme for all instances of this class. Nevertheless the nane of two instances
of different classes can be the sane. */

char* nane;

/[** This holds a list of vertices for usage within Python. A face uses the indices
of this vertices. This allows to store the vertices efficient and to share the sane
vertex between different triangles or quads. */

PyQbj ect* verti ces;

[** This holds a list of vertex normals which can be used for "snooth" rendering.
The nunber of elenments in this list should be exactly the sanme as in the list for the
vertices. */

PyQoj ect* nornal s;

/[** This holds a list of vertex colors. The list mght be enpty if no colors are
used. But if they are used the |ist should be exactly of the sane size as the list of
vertices. */

Pyoj ect* col ors;

[** This holds a list of faces. At the nonent a face is alist with 6 entries
(integers). This mght change in the future. The first 4 entries are indices to
descri be the vertices for a triangle or a quad. The decision if a quad is used or not
is made by the 4th entry. If this is O then only the first 3 entries are used for an
triangle. The 5th entry tells if the triangle (or quad) should be rendered as
"snmoot h" (using vertex normals) or not. The last entry is the index of the materia
used for this face. */

PyQoj ect* faces;

/[** This holds a |ist of texture coordinates. The list mght be enpty but if used
the list should have exactly the sane size as the list of faces. The texture
coordi nates are stored for each face as a list of 4 sublists (for triangles just
ignore the 4th sublist). Each of this sublists has 2 entries (u- and v- direction).
*/

PyQbj ect * texcoords;

[** This holds the nane (with path) of the used texture (if any). */

PyQbj ect* texture;

¥

#endi f

Documentation generated by jan@nvidea on Tue Feb 6 14:36:56 CET 2001

Object Class Reference

[Blender Index] [Blender Hierarchy]

Blender objects can be seen in the OOPS window as gray rectangles More...
#i ncl ude <obj ect. h>

Inherits: Blender

Public Members

e Object ()

o ~Object ()

« Object (const char* name)
o char* name

« PyObject* matrix

o PyODbject* inverseMatrix
« PyObject* materials

« PyObject* type

« PyObject* data

Detailed Description

Blender objects can be seen in the OOPS window as gray rectangles. The have mainly amatrix and a
connection to associated data like a mesh.

Object(const char* name)

A Blender object has allways a unigue name. The name you give as an argument is only a proposal for
the real name. Blender will check if this name is already used and rename the object if necessary.

char* name

All rectangles you can see in the OOPS window are instances of classes with an unique name for all
instances of this class. Nevertheless the name of two instances of different classes can be the same.

PyObject* matrix

The matrix is stored in a PyObject for the usage of it within Python. Thisisalist of liststo represent a
4x4 matrix. This might change in the future.

PyObject* inverseMatrix

This holds the 4x4 inverse matrix as alist of lists for usage within Python.

PyObject* materials

The variable materials holds alist of names for usage within Python. The names can be used to get the
real material settings by calling the function getM aterial (name).

PyObject* type

To know within Python which type the connected data has this variable is either None (no connected
data) or athe name of avalid class. The name stored in data can be used to get the real data (e.g. if type
=="Mesh": mesh = getMesh(name)).

PyObject* data

To know within Python which type the connected data has the type variable names the class and this
variable is either None (no connected data) or avalid name. This name can be used to get the real data
(e.g. if type=="Mesh": mesh = getMesh(name)).

 Author: Jan Walter Kdoc
« Documentation generated by jan@nvidea on Tue Feb 6 14:36:56 CET 2001

/***

object.h - description
begi n : Wed Dec 6 2000
copyri ght : (© 2000 by Jan Walter
emai | . jan@l ender . nl

***/

/***
*

*
* This programis free software; you can redistribute it and/or nodify *
* it under the terns of the GNU General Public License as published by *
* the Free Software Foundation; either version 2 of the License, or *
* (at your option) any |ater version. *
* *
* *

ER R I b b S b S b S b b S R S S S b Rk S b S S b S b S RN S b S b S b b b b b S b S b SRR

/

#i f ndef OBJECT_H
#defi ne OBJECT_H

#i ncl ude <bl ender. h>
struct PyQbject;
/ **Bl ender objects can be seen in the OOPS wi ndow as gray rectangles. The have nainly

a matrix and a connection to associ ated data |i ke a nesh.
*@ut hor Jan Wal ter

*/
class nject : public Blender {
publ i c:
Qoj ect () ;

~Coj ect () ;

/** A Bl ender object has allways a unique nanme. The nanme you give as an argunent is
only a proposal for the real name. Blender will check if this nanme is already used
and renane the object if necessary. */

hj ect (const char* nane);
private: // Private attributes

[** Al rectangles you can see in the OOPS wi ndow are instances of classes with an
uni que name for all instances of this class. Nevertheless the nane of two instances
of different classes can be the sane. */

char* name;

/[** The matrix is stored in a PyQbject for the usage of it within Python. This is a
list of lists to represent a 4x4 matrix. This mght change in the future. */

PyQoj ect* matri x;

[** This holds the 4x4 inverse matrix as a list of |lists for usage w thin Python.

*/

PyQhj ect* inverseMatri x;

/[** The variable nmaterials holds a |list of names for usage within Python. The nanes
can be used to get the real material settings by calling the function
get Materi al (nane). */

PyQbj ect* material s;

[** To know wi thin Python which type the connected data has this variable is either
None (no connected data) or a the nanme of a valid class. The name stored in data can
be used to get the real data (e.g. if type == "Mesh": nesh = get Mesh(nane)). */

PyQbj ect * type;

/[** To know wi thin Python which type the connected data has the type variabl e nanes
the class and this variable is either None (no connected data) or a valid nanme. This
name can be used to get the real data (e.g. if type == "Mesh": nmesh = get Mesh(nane)).
*/

PyQbj ect * dat a;

3

#endi f

Documentation generated by jan@nvidea on Tue Feb 6 14:36:56 CET 2001

Scene Class Reference

[Blender Index] [Blender Hierarchy]

Blender scenes can be seen in the OOPS window as green rectangles More...
#i ncl ude <scene. h>

Inherits: Blender

Public Members

o Scene()

« ~Scene()

« PyObject* addObject (PyObject* object)
« PyObject* getCurrentCamera ()

o char* name

« PyObject* objects

Detailed Description

Blender scenes can be seen in the OOPS window as green rectangles. A scene has alot of objects
connected to it.

PyObject* addObject(PyObject* object)

Thisfunction is used by connect(...) to make alink between an existing object and a existing scene. |
guess it should not be used standalone right now.

PyObject* getCurrentCameral()

This returns the current camera for this scene.

char* name

All rectangles you can see in the OOPS window are instances of classes with an unique name for all
instances of this class. Neverthel ess the name of two instances of different classes can be the same.

PyObject* objects

The variable objects holds a list of names for usage within Python. The names can be used to get the real
objects by calling the function getObject(name).

o Author: Jan Walter Kdoc
« Documentation generated by jan@nvidea on Tue Feb 6 14:36:56 CET 2001

/***

scene.h - description
begi n : Thu Dec 7 2000
copyri ght : (© 2000 by Jan Walter
emai | . jan@l ender . nl

***/

/***

*

*
* This programis free software; you can redistribute it and/or nodify *
* it under the terns of the GNU General Public License as published by *
* the Free Software Foundation; either version 2 of the License, or *
* (at your option) any |ater version. *
* *
* *

ER R I b b S b S b S b b S R S S S b Rk S b S S b S b S RN S b S b S b b b b b S b S b SRR

/

#i f ndef SCENE_H
#defi ne SCENE_H

#i ncl ude <bl ender. h>
struct PyQbject;
/ **Bl ender scenes can be seen in the OOPS wi ndow as green rectangles. A scene has a

| ot of objects connected to it.
*@ut hor Jan Wal ter

*/
cl ass Scene : public Blender {
publ i c:
Scene();
~Scene() ;
[** This function is used by connect(...) to nmake a |link between an exi sting object
and a existing scene. | guess it should not be used standal one right now */

PyQoj ect * addObj ect (Pyhj ect* obj ect);

/[** This returns the current canera for this scene. */

Pybj ect * get Current Canera();
private: // Private attributes

[** Al rectangles you can see in the OOPS wi ndow are instances of classes with an
uni que nane for all instances of this class. Neverthel ess the nane of two instances
of different classes can be the sane. */

char* nane;

/[** The variable objects holds a |list of names for usage within Python. The nanes
can be used to get the real objects by calling the function getbject(name). */

PyQhj ect * obj ects;
3

#endi f

Documentation generated by jan@nvidea on Tue Feb 6 14:36:56 CET 2001

GUI Class Reference

[Blender Index] [Blender Hierarchy]

Thisisin fact no classit isamodule in Python More...

#i ncl ude <gui . h>

Public Members

. GUI()
. ~GUI ()

Detailed Description

Thisisin fact no classit isamodule in Python. But | use it here as a class to document the global
functions availabe in the GUI module.

o Author: Jan Walter Kdoc
« Documentation generated by jan@nvidea on Tue Feb 6 14:36:56 CET 2001

/***

gui.h - description
begi n . Fri Jan 26 2001
copyri ght : (© 2001 by Jan Walter
emai | . jan@l ender . nl

***/

/***

*

*
* This programis free software; you can redistribute it and/or nodify *
* it under the terns of the GNU General Public License as published by *
* the Free Software Foundation; either version 2 of the License, or *
* (at your option) any |ater version. *
* *
* *

ER R I b b S b S b S b b S R S S S b Rk S b S S b S b S RN S b S b S b b b b b S b S b SRR

/

#i f ndef GUI _H
#define GU _H

[**This is in fact no class it is a nodule in Python. But | use it here as a class to
docunent the global functions availabe in the GU nodul e.
*@ut hor Jan Walter

*/
class QU {
publ i c:
QU () ;
~QUl () ;
};
#endi f

Documentation generated by jan@nvidea on Tue Feb 6 14:36:56 CET 2001

FileSelector Class Reference

[Blender Index] [Blender Hierarchy]

A file selector can be seen in Blender when you load (F1) or save (F2) afile More...

#i ncl ude <fil esel ector. h>

Inherits: GUI

Public Members

FileSelector ()

~FileSelector ()

PyObject* activate (PyObject* callback, PyObject* callbackArgs)
PyObject* filename

Detailed Description

A file selector can be seen in Blender when you load (F1) or save (F2) afile. For the Python API you
want to use the same mechanism to get access to the filename and the path a user can select interactively.
Y ou haveto activate the FileSelector with a callback function (in Python). When the user has finished his
selection the callback function is called and you can access the filename and the path in the callback
function.

PyObject* activate(PyObject* callback, PyObject*
callbackArgs)
With this function you start the user interaction with afile selector. The callback function is called after

finishing the interaction and you can give access to the FileSelector instance by giving the callback
function an (optional) argument.

PyObject* filename

This holds the file name (with path) of the selected file.

« Author: Jan Walter Kdoc
« Documentation generated by jan@nvidea on Tue Feb 6 14:36:56 CET 2001

/***

fileselector.h - description
begi n . Fri Jan 26 2001
copyri ght : (© 2001 by Jan Walter
emai | . jan@l ender . nl

***/

/***

*

*
* This programis free software; you can redistribute it and/or nodify *
* it under the terns of the GNU General Public License as published by *
* the Free Software Foundation; either version 2 of the License, or *
* (at your option) any |ater version. *
* *
* *

ER R I b b S b S b S b b S R S S S b Rk S b S S b S b S RN S b S b S b b b b b S b S b SRR

/

#i f ndef FI LESELECTOR_H
#define FI LESELECTOR_H

#i ncl ude <gui . h>
struct PyQbject;

/**A file selector can be seen in Bl ender when you |load (Fl1) or save (F2) a file. For
the Python APl you want to use the sane nechanismto get access to the fil ename and
the path a user can select interactively. You have to activate the FileSelector wth
a call back function (in Python). Wen the user has finished his selection the
cal | back function is called and you can access the filenane and the path in the
cal I back functi on.

*@ut hor Jan Walter

*/

class FileSelector : public GU {
public:

Fil eSel ector();
~Fi | eSel ector();

[** Wth this function you start the user interaction with a file selector. The
cal | back function is called after finishing the interaction and you can give access
to the FileSelector instance by giving the callback function an (optional) argunent.
*/

PyQbj ect* activate(PyObject* call back, PyObject* call backArgs);
private: // Private attributes

[** This holds the file name (with path) of the selected file. */
PyQoj ect* fil enane;
b

#endi f

Documentation generated by jan@nvidea on Tue Feb 6 14:36:56 CET 2001

